1201.5548 (Simen Kvaal)
Simen Kvaal
The curse of dimensionality (COD) limits the current state-of-the-art {\it ab
initio} propagation methods for non-relativistic quantum mechanics to
relatively few particles. For stationary structure calculations, the
coupled-cluster (CC) method overcomes the COD in the sense that the method
scales polynomially with the number of particles while still being
size-consistent and extensive. We generalize the CC method to the time domain
while allowing the single-particle functions to vary in an adaptive fashion as
well, thereby creating a highly flexible, polynomially scaling approximation to
the time-dependent Schr\"odinger equation. The method inherits size-consistency
and extensivity from the CC method. The method is dubbed orbital-adaptive
time-dependent coupled-cluster (OATDCC), and is a hierarchy of approximations
to the now standard multi-configurational time-dependent Hartree method for
fermions. A numerical experiment is also given.
View original:
http://arxiv.org/abs/1201.5548
No comments:
Post a Comment