Monday, February 13, 2012

1008.1168 (Tobias Fritz)

Tsirelson's problem and Kirchberg's conjecture    [PDF]

Tobias Fritz
Tsirelson's problem asks whether the set of nonlocal quantum correlations
with a tensor product structure for the Hilbert space coincides with the one
where only commutativity between observables located at different sites is
assumed. Here it is shown that Kirchberg's QWEP conjecture on tensor products
of C*-algebras would imply a positive answer to this question for all bipartite
scenarios. This remains true also if one considers not only spatial
correlations, but also spatiotemporal correlations, where each party is allowed
to apply their measurements in temporal succession; we provide an example of a
state together with observables such that ordinary spatial correlations are
local, while the spatiotemporal correlations reveal nonlocality. Moreover, we
find an extended version of Tsirelson's problem which, for each nontrivial Bell
scenario, is equivalent to the QWEP conjecture. This extended version can be
conveniently formulated in terms of steering the system of a third party.
Finally, a comprehensive mathematical appendix offers background material on
complete positivity, tensor products of C*-algebras, group C*-algebras, and
some simple reformulations of the QWEP conjecture.
View original: http://arxiv.org/abs/1008.1168

No comments:

Post a Comment