1202.1241 (G. Akemann et al.)
G. Akemann, A. C. Ipsen
We derive the distributions of individual eigenvalues for the Hermitian
Wilson Dirac Operator D5 as well as for real eigenvalues of the Wilson Dirac
Operator DW. The framework we provide is valid in the epsilon regime of chiral
perturbation theory for any number of flavours Nf and for non-zero low energy
constants W6, W7, W8. It is given as a perturbative expansion in terms of the
k-point spectral density correlation functions and integrals thereof, which in
some cases reduces to a Fredholm Pfaffian. For the real eigenvalues of DW at
fixed chirality nu this expansion truncates after at most nu terms for small
lattice spacing "a". Explicit examples for the distribution of the first and
second eigenvalue are given in the microscopic domain as a truncated expansion
of the Fredholm Pfaffian for quenched D5, where all k-point densities are
explicitly known from random matrix theory. For the real eigenvalues of
quenched DW at small "a" we illustrate our method by the finite expansion of
the corresponding Fredholm determinant of size nu.
View original:
http://arxiv.org/abs/1202.1241
No comments:
Post a Comment