Sebastiano Carpi, Roberto Conti, Robin Hillier, Mihaly Weiner
We study the representation theory of a conformal net A on the circle from a
K-theoretical point of view using its universal C*-algebra C*(A). We prove that
if A satisfies the split property then, for every representation \pi of A with
finite statistical dimension, \pi(C*(A)) is weakly closed and hence a finite
direct sum of type I_\infty factors. We define the more manageable locally
normal universal C*-algebra C*_ln(A) as the quotient of C*(A) by its largest
ideal vanishing in all locally normal representations and we investigate its
structure. In particular, if A is completely rational with n sectors, then
C*_ln(A) is a direct sum of n type I_\infty factors. Its ideal K_A of compact
operators has nontrivial K-theory, and we prove that the DHR endomorphisms of
C*(A) with finite statistical dimension act on K_A, giving rise to an action of
the fusion semiring of DHR sectors on K_0(K_A)$. Moreover, we show that this
action corresponds to the regular representation of the associated fusion
algebra.
View original:
http://arxiv.org/abs/1202.2543
No comments:
Post a Comment