1202.2915 (Ilia Binder et al.)
Ilia Binder, Mircea Voda
We consider infinite quasi-periodic Jacobi self-adjoint matrices for which
the three main diagonals are given via values of real analytic functions on the
trajectory of the shift $x\rightarrow x+\omega$. We assume that the Lyapunov
exponent $L(E_{0})$ of the corresponding Jacobi cocycle satisfies
$L(E_{0})\ge\gamma>0$. In this setting we prove that the number of eigenvalues
$E_{j}^{(n)}(x)$ of a submatrix of size $n$ contained in an interval $I$
centered at $E_{0}$ with $|I|=n^{-C_{1}}$ does not exceed $(\log n)^{C_{0}}$
for any $x$. Here $n\ge n_{0}$, and $n_{0}$, $C_{0}$, $C_{1}$ are constants
depending on $\gamma$ (and the other parameters of the problem).
View original:
http://arxiv.org/abs/1202.2915
No comments:
Post a Comment