Tristan Hubsch, Gregory A. Katona
Recent efforts to classify representations of supersymmetry with no central
charge have focused on supermultiplets that are aptly depicted by Adinkras,
wherein every supersymmetry generator transforms each component field into
precisely one other component field or its derivative. Herein, we study
gauge-quotients of direct sums of Adinkras by a supersymmetric image of another
Adinkra and thus solve a puzzle from Ref.[2]: The so-defined supermultiplets do
not produce Adinkras but more general types of supermultiplets, each depicted
as a connected network of Adinkras. Iterating this gauge-quotient construction
then yields an indefinite sequence of ever larger supermultiplets, reminiscent
of Weyl's construction that is known to produce all finite-dimensional unitary
representations in Lie algebras.
View original:
http://arxiv.org/abs/1202.4342
No comments:
Post a Comment