0205034 (David J Rowe et al.)
David J Rowe, Joe Repka
It is shown that if H is a Hilbert space for a representation of a group G, then there are triplets of spaces F_H, H, F^H, in which F^H is a space of coherent state or vector coherent state wave functions and F_H is its dual relative to a conveniently defined measure. It is shown also that there is a sequence of maps F_H -> H -> F^H which facilitates the construction of the corresponding inner products. After completion if necessary, the F_H, H, and F^H, become isomorphic Hilbert spaces. It is shown that the inner product for H is often easier to evaluate in F_H than F^H. Thus, we obtain integral expressions for the inner products of coherent state and vector coherent state representations. These expressions are equivalent to the algebraic expressions of K-matrix theory, but they are frequently more efficient to apply. The construction is illustrated by many examples.
View original:
http://arxiv.org/abs/0205034
No comments:
Post a Comment