Alessandro Giuliani, Rafael L. Greenblatt, Vieri Mastropietro
We obtain an explicit expression for the multipoint energy correlations of a non solvable two-dimensional Ising models with nearest neighbor ferromagnetic interactions plus a weak finite range interaction of strength $\lambda$, in a scaling limit in which we send the lattice spacing to zero and the temperature to the critical one. Our analysis is based on an exact mapping of the model into an interacting lattice fermionic theory, which generalizes the one originally used by Schultz, Mattis and Lieb for the nearest neighbor Ising model. The interacting model is then analyzed by a multiscale method first proposed by Pinson and Spencer. If the lattice spacing is finite, then the correlations cannot be computed in closed form: rather, they are expressed in terms of infinite, convergent, power series in $\lambda$. In the scaling limit, these infinite expansions radically simplify and reduce to the limiting energy correlations of the integrable Ising model, up to a finite renormalization of the parameters. Explicit bounds on the speed of convergence to the scaling limit are derived.
View original:
http://arxiv.org/abs/1204.4040
No comments:
Post a Comment