Wednesday, April 25, 2012

1204.5297 (Massimo Campanino et al.)

Type transition of simple random walks on randomly directed regular
lattices
   [PDF]

Massimo Campanino, Dimitri Petritis
Simple random walks on a partially directed version of $\mathbb{Z}^2$ are considered. More precisely, vertical edges between neighbouring vertices of $\mathbb{Z}^2$ can be traversed in both directions (they are undirected) while horizontal edges are one-way. The horizontal orientation is prescribed by a random perturbation of a periodic function, the perturbation probability decays according to a power law in the absolute value of the ordinate. We study the type of the simple random walk, i.e.\ its being recurrent or transient, and show that there exists a critical value of the decay power, above which the walk is almost surely recurrent and below which is almost surely transient.
View original: http://arxiv.org/abs/1204.5297

No comments:

Post a Comment