1201.0712 (Phoebus Rosakis)
Phoebus Rosakis
The energy of a homogeneously deformed crystal is calculated in the context of a central force lattice model in two dimensions. When the crystal shape is a lattice polygon, it is shown that the energy equals the bulk elastic energy, plus the boundary integral of a surface energy density, plus the sum over the vertices of a corner energy function. This is an exact result when the interatomic potential has finite range; for an infinite-range potential it is asymptotically valid as the lattice parameter tends to zero. The surface energy density is obtained explicitly as a function of the deformation gradient and boundary normal. The corner energy is found as an explicit function of the deformation gradient and the normals of the two facets meeting at the corner. A new bond counting approach is used, which reduces the problem to certain lattice point problems of number theory. The approach is then extended to more general convex regions with possibly curved boundary. The resulting surface energy density depends on the unit normal in a striking way. It is continuous at irrational directions, discontinuous at rational ones and nowhere differentiable.
View original:
http://arxiv.org/abs/1201.0712
No comments:
Post a Comment