Jorgen Rasmussen, Philippe Ruelle
Working with Lieb's transfer matrix for the dimer model, we point out that the full set of dimer configurations may be partitioned into disjoint subsets (sectors) closed under the action of the transfer matrix. These sectors are labelled by an integer or half-integer quantum number we call the variation index. In the continuum scaling limit, each sector gives rise to a representation of the Virasoro algebra. We determine the corresponding conformal partition functions and their finitizations, and observe an intriguing link to the Ramond and Neveu-Schwarz sectors of the critical dense polymer model as described by a conformal field theory with central charge c=-2.
View original:
http://arxiv.org/abs/1207.0385
No comments:
Post a Comment