Thursday, July 19, 2012

1207.4473 (Gianluca Calcagni et al.)

Quantum mechanics in fractional and other anomalous spacetimes    [PDF]

Gianluca Calcagni, Giuseppe Nardelli, Marco Scalisi
We formulate quantum mechanics in spacetimes with real-order fractional geometry and more general factorizable measures. In spacetimes where coordinates and momenta span the whole real line, Heisenberg's principle is proven and the wave-functions minimizing the uncertainty are found. In spite of the fact that ordinary time and spatial translations are broken and the dynamics is not unitary, the theory is in one-to-one correspondence with a unitary one, thus allowing us to employ standard tools of analysis. These features are illustrated in the examples of the free particle and the harmonic oscillator. While fractional (and the more general anomalous-spacetime) free models are formally indistinguishable from ordinary ones at the classical level, at the quantum level they differ both in the Hilbert space and for a topological term fixing the classical action in the path integral formulation. Thus, all non-unitarity in fractional quantum dynamics is encoded in a contribution depending only on the initial and final state.
View original: http://arxiv.org/abs/1207.4473

No comments:

Post a Comment