1207.6871 (O. Foda et al.)
O. Foda, M. Wheeler
We consider the rational six-vertex model on an L-by-L lattice with domain wall boundary conditions and restrict N parallel-line rapidities, N < L/2, to satisfy length-L XXX spin-1/2 chain Bethe equations. We show that the partition function is an (L-2N)-parameter extension of Slavnov's scalar product of a Bethe eigenstate and a generic state, with N magnons each, on a length-L XXX spin-1/2 chain. Decoupling the extra parameters, we obtain a third determinant expression for the scalar product, where the first is due to Slavnov [1], and the second is due to Kostov and Matsuo [2]. We show that the new determinant is a discrete KP tau-function in the inhomogeneities, and consequently that tree-level N = 4 SYM structure constants that are known to be determinants, remain determinants at 1-loop level.
View original:
http://arxiv.org/abs/1207.6871
No comments:
Post a Comment