Wednesday, August 15, 2012

1112.5668 (Davide Fioravanti et al.)

TBA-like equations and Casimir effect in (non-)perturbative AdS/CFT    [PDF]

Davide Fioravanti, Marco Rossi
We consider high spin, $s$, long twist, $L$, planar operators (asymptotic Bethe Ansatz) of strong ${\cal N}=4$ SYM. Precisely, we compute the minimal anomalous dimensions for large 't Hooft coupling $\lambda$ to the lowest order of the (string) scaling variable $\ell \sim L/ (\ln \mathcal{S} \sqrt{\lambda})$ with GKP string size $\sim\ln \mathcal{S}\equiv 2 \ln (s/\sqrt{\lambda})$. At the leading order $(\ln \mathcal{S}) \cdot \ell ^2 $, we can confirm the O(6) non-linear sigma model description for this bulk term, without boundary term $(\ln \mathcal{S})^0$. Going further, we derive, extending the O(6) regime, the exact effect of the size finiteness. In particular, we compute, at all loops, the first Casimir correction $\ell ^0/\ln \mathcal{S}$ (in terms of the infinite size O(6) NLSM), which reveals only one massless mode (out of five), as predictable once the O(6) description has been extended. Consequently, upon comparing with string theory expansion, at one loop our findings agree for large twist, while reveal for negligible twist, already at this order, the appearance of wrapping. At two loops, as well as for next loops and orders, we can produce predictions, which may guide future string computations.
View original: http://arxiv.org/abs/1112.5668

No comments:

Post a Comment