Mario J. Pinheiro, Marcus Büker
Newton's second law has limited scope of application when transient phenomena are present. We consider a modification of Newton's second law in order to take into account a sudden change (surge) of angular momentum or linear momentum. We hypothesize that space itself resists such surges according to a kind of induction law (related to inertia); additionally, we provide further evidence of the "fluidic" nature of space itself. This "back-reaction" is quantified by the tendency of angular momentum flux threading across a surface. This quantity is mass-dependent, and bears similarity to the quantum mechanics phase shift, present in the Aharonov-Bohm and Aharonov-Casher effects. Furthermore, this provides evidence of vacuum polarization, a phenomena which is relative to local space indicating that local geometry and topology should be taken into account in any fundamental physical theory.
View original:
http://arxiv.org/abs/1208.3458
No comments:
Post a Comment