Huai-Dong Cao, Qiang Chen
In this paper, we classify n-dimensional (n>3) complete Bach-flat gradient shrinking Ricci solitons. More precisely, we prove that any 4-dimensional Bach-flat gradient shrinking Ricci soliton is either Einstein, or locally conformally flat hence a finite quotient of the Gaussian shrinking soliton $R^4$ or the round cylinder $S^3\times R$. More generally, for n>4, a Bach-flat gradient shrinking Ricci soliton is either Einstein, or a finite quotient of the Gaussian shrinking soliton $R^n$ or the product $N^{n-1}\times R$, where $N^{n-1}$ is Einstein.
View original:
http://arxiv.org/abs/1105.3163
No comments:
Post a Comment