Young-Ju Lee, Chen-Song Zhang
We confirm numerically that the Johnson-Segalman model is able to reproduce the continual oscillations of the falling sphere observed in some viscoelastic models. The empirical choice of parameters used in the Johnson-Segalman model is from the ones that show the non-monotone stress-strain relation of the steady shear flows of the model. The carefully chosen parameters yield continual, self-sustaining, (ir)regular and periodic oscillations of the speed for the falling sphere through the Johnson-Segalman fluids. In particular, our simulations reproduce the phenomena: the falling sphere settles slower and slower until a certain point at which the sphere suddenly accelerates and this pattern is repeated continually.
View original:
http://arxiv.org/abs/1209.1328
No comments:
Post a Comment