Monday, October 15, 2012

1108.3696 (Manuel Friedrich et al.)

An atomistic-to-continuum analysis of crystal cleavage in a
two-dimensional model problem
   [PDF]

Manuel Friedrich, Bernd Schmidt
A two-dimensional atomic mass spring system is investigated for critical fracture loads and its crack path geometry. We rigorously prove that, in the discrete-to-continuum limit, the minimal energy of a crystal under uniaxial tension leads to a universal cleavage law and energy minimizers are either homogeneous elastic deformations or configurations that are completely cracked and do not store elastic energy. Beyond critical loading, the specimen generically cleaves along a unique optimal crystallographic hyperplane. For specific symmetric crystal orientations, however, cleavage might fail. In this case a complete characterization of possible limiting crack geometries is obtained.
View original: http://arxiv.org/abs/1108.3696

No comments:

Post a Comment