Thursday, October 11, 2012

1202.3651 (Arvind Ayyer et al.)

New enumeration formulas for alternating sign matrices and square ice
partition functions
   [PDF]

Arvind Ayyer, Dan Romik
The refined enumeration of alternating sign matrices (ASMs) of given order having prescribed behavior near one or more of their boundary edges has been the subject of extensive study, starting with the Refined Alternating Sign Matrix Conjecture of Mills-Robbins-Rumsey, its proof by Zeilberger, and more recent work on doubly-refined and triply-refined enumeration by several authors. In this paper we extend the previously known results on this problem by deriving explicit enumeration formulas for the "top-left-bottom" (triply-refined) and "top-left-bottom-right" (quadruply-refined) enumerations. The latter case solves the problem of computing the full boundary correlation function for ASMs. The enumeration formulas are proved by deriving new representations, which are of independent interest, for the partition function of the square ice model with domain wall boundary conditions at the "combinatorial point" 2{\pi}/3.
View original: http://arxiv.org/abs/1202.3651

No comments:

Post a Comment