1109.0595 (Zachary Slepian)
Zachary Slepian
In 3-d the average projected area of a convex solid is 1/4 the surface area, as Cauchy showed in the 19th century. In general, the ratio in n dimensions may be obtained from Cauchy's surface area formula, which is in turn a special case of Kubota's theorem. However, while these latter results are well-known to those working in integral geometry or the theory of convex bodies, the results are largely unknown to the physics community---so much so that even the 3-d result is sometimes said to have first been proven by an astronomer in the early 20th century! This is likely because the standard proofs in the mathematical literature are, by and large, couched in terms of concepts that are may not be familiar to many physicists. Therefore, in this work, we present a simple geometrical method of calculating the ratio of average projected area to surface area for convex bodies in arbitrary dimensions. We focus on a pedagogical, physically intuitive treatment that it is hoped will be useful to those in the physics community. We do discuss the mathematical background of the theorem as well, pointing those who may be interested to sources that offer the proofs that are standard in the fields of integral geometry and the theory of convex bodies. We also provide discussion of the applications of the theorem, especially noting that higher-dimensional ratios may be of use for constructing observational tests of string theory. Finally, we examine the limiting behavior of the ratio with the goal of offering intuition on its behavior by pointing out a suggestive connection with a well-known fact in statistics.
View original:
http://arxiv.org/abs/1109.0595
No comments:
Post a Comment