Jean-Paul Blaizot, Maciej A. Nowak, Piotr Warchoł
We show that the derivative of the logarithm of the average characteristic polynomial of a diffusing Wishart matrix obeys an exact partial differential equation valid for an arbitrary value of N, the size of the matrix. In the large N limit, this equation generalizes the simple Burgers equation that has been obtained earlier for Hermitian or unitary matrices. The solution through the method of characteristics presents singularities that we relate to the precursors of shock formation in fluid dynamical equations. The 1/N corrections may be viewed as viscous corrections, with the role of the viscosity being played by the inverse of the doubled dimension of the matrix. These corrections are studied through a scaling analysis in the vicinity of the shocks, and one recovers in a simple way the universal Bessel oscillations (so-called hard edge singularities) familiar in random matrix theory.
View original:
http://arxiv.org/abs/1211.0029
No comments:
Post a Comment