Oleg Yu Imanuvilov, Masahiro Yamamoto
Let $\Omega\subset \Bbb R^2$ be a bounded domain with $\partial\Omega\in C^\infty$ and $L$ be a positive number. For a three dimensional cylindrical domain $Q=\Omega\times (0,L)$, we obtain some uniqueness result of determining a complex-valued potential for the Schr\"odinger equation from partial Cauchy data when Dirichlet data vanish on a subboundary $(\partial\Omega\setminus\widetilde{\Gamma}) \times [0,L]$ and the corresponding Neumann data are observed on $\widetilde\Gamma \times [0,L]$, where $\widetilde\Gamma$ is an arbitrary fixed open set of $\partial\Omega.$
View original:
http://arxiv.org/abs/1211.1419
No comments:
Post a Comment