1211.2919 (Manuel F. Ranada)
Manuel F. Ranada
The higher-order superintegrability of systems separable in polar coordinates is studied using an approch that was previously applied for the study of the superintegrability of a generalized Smorodinsky-Winternitz system. The idea is that the additional constant of motion can be factorized as the product of powers of two particular rather simple complex functions (here denoted by $M$ and $N$). This technique leads to a proof of the superintegrability of the Tremblay-Turbiner-Winternitz system and to the explicit expression of the constants of motion. A second family (related with the first one) of superintegrable systems is also studied.
View original:
http://arxiv.org/abs/1211.2919
No comments:
Post a Comment