Wednesday, November 21, 2012

1211.4760 (Anne Fey et al.)

Critical densities in sandpile models with quenched or annealed disorder    [PDF]

Anne Fey, Ronald Meester
We discuss various critical densities in sandpile models. The stationary density is the average expected height in the stationary state of a finite-volume model; the transition density is the critical point in the infinite-volume counterpart. These two critical densities were generally assumed to be equal, but this has turned out to be wrong for deterministic sandpile models. We show they are not equal in a quenched version of the Manna sandpile model either. In the literature, when the transition density is simulated, it is implicitly or explicitly assumed to be equal to either the so-called threshold density or the so-called critical activity density. We properly define these auxiliary densities, and prove that in certain cases, the threshold density is equal to the transition density. We extend the definition of the critical activity density to infinite volume, and prove that in the standard infinite volume sandpile, it is equal to 1. Our results should bring some order in the precise relations between the various densities.
View original: http://arxiv.org/abs/1211.4760

No comments:

Post a Comment