Liana David, Ian Strachan
The big phase space, the geometric setting for the study of quantum cohomology with gravitational descendents, is a complex manifold and consists of an infinite number of copies of the small phase space. The aim of this paper is to define a Hermitian geometry on the big phase space. Using the approach of Dijkgraaf and Witten, we lift various geometric structures of the small phase space to the big phase space. The main results of our paper state that various notions from tt*-geometry are preserved under such liftings.
View original:
http://arxiv.org/abs/1211.5453
No comments:
Post a Comment