Marcel Bischoff, Yoh Tanimoto
In the first part, we have constructed several families of interacting wedge-local nets of von Neumann algebras. In particular, there has been discovered a family of models based on the endomorphisms of the U(1)-current algebra of Longo-Witten. In this second part, we further investigate endomorphisms and interacting models. The key ingredient is the free massless fermionic net, which contains the U(1)-current net as the fixed point subnet with respect to the U(1) gauge action. Through the restriction to the subnet, we construct a new family of Longo-Witten endomorphisms on the U(1)-current net and accordingly interacting wedge-local nets in two-dimensional spacetime. The U(1)-current net admits the structure of particle numbers and the S-matrices of the models constructed here do mix the spaces with different particle numbers of the bosonic Fock space.
View original:
http://arxiv.org/abs/1111.1671
No comments:
Post a Comment