Carlos Kenig, Andrew Lawrie, Wilhelm Schlag
In this paper we study 1-equivariant wave maps of finite energy from 1+3-dimensional Minkowski space exterior to the unit ball at the origin into the 3-sphere. We impose a Dirichlet boundary condition at r=1, meaning that the unit sphere in R^3 gets mapped to the north pole. Finite energy implies that spacial infinity gets mapped to either the north or south pole. In particular, each such equivariant wave map has a well-defined topological degree which is an integer. We establish relaxation of such a map of arbitrary energy and degree to the unique stationary harmonic map in its degree class. This settles a recent conjecture of Bizon, Chmaj, Maliborski who observed this asymptotic behavior numerically.
View original:
http://arxiv.org/abs/1301.0817
No comments:
Post a Comment