Jonathan Breuer, Maurice Duits
We consider asymptotics of orthogonal polynomial ensembles, in the macroscopic and mesoscopic scales. We prove both global and local laws of large numbers (analogous to the recently proven local semicircle law for Wigner matrices) under fairly weak conditions on the underlying measure $\mu$. Our main tools are a general concentration inequality for determinantal point processes with a kernel that is a self-adjoint projection, and a strengthening of the Nevai condition from the theory of orthogonal polynomials.
View original:
http://arxiv.org/abs/1301.2061
No comments:
Post a Comment