Eric A. Carlen, Rupert L. Frank, Elliott H. Lieb
There is a family of potentials that minimize the lowest eigenvalue of a Schr\"odinger eigenvalue under the constraint of a given L^p norm of the potential. We give effective estimates for the amount by which the eigenvalue increases when the potential is not one of these optimal potentials. Our results are analogous to those for the isoperimetric problem and the Sobolev inequality. We also prove a stability estimate for H\"older's inequality, which we believe to be new.
View original:
http://arxiv.org/abs/1301.5032
No comments:
Post a Comment