Tuesday, February 19, 2013

1302.4074 (Mouez Dimassi et al.)

Trace asymptotics formula for the Schrödinger operators with constant
magnetic fields
   [PDF]

Mouez Dimassi, Anh Tuan Duong
In this paper, we consider the 2D- Schr\"odinger operator with constant magnetic field $H(V)=(D_x-By)^2+D_y^2+V_h(x,y)$, where $V$ tends to zero at infinity and $h$ is a small positive parameter. We will be concerned with two cases: the semi-classical limit regime $V_h(x,y)=V(h x,h y)$, and the large coupling constant limit case $V_h(x,y)=h^{-\delta} V(x,y)$. We obtain a complete asymptotic expansion in powers of $h^2$ of ${\rm tr}(\Phi(H(V),h))$, where $\Phi(\cdot,h)\in C^\infty_0(\mathbb R;\mathbb R)$. We also give a Weyl type asymptotics formula with optimal remainder estimate of the counting function of eigenvalues of $H(V)$.
View original: http://arxiv.org/abs/1302.4074

No comments:

Post a Comment