1303.3935 (Florin Moldoveanu)
Florin Moldoveanu
Quantum mechanics is an extremely successful theory of nature and yet it has resisted all attempts to date to have an intuitive axiomatization. In contrast, special theory of relativity is well understood and is rooted into natural or experimentally justified postulates. Here we show an axiomatization approach to quantum mechanics which is very similar with how special theory of relativity can be derived. The core idea is that of composing two systems and the fact that the composed system should have an invariant description in terms of dynamics. This leads to a Lie-Jordan algebraic formulation of quantum mechanics which can be converted into the usual Hilbert space formalism by the standard GNS construction. The starting assumptions are minimal: the existence of time and that of a configuration space which supports a tensor product as a way to compose two physical systems into a larger one.
View original:
http://arxiv.org/abs/1303.3935
No comments:
Post a Comment