Alberto Lovison, Franco Cardin
We present the exact finite reduction of a class of nonlinearly perturbed wave equations, based on the Amann-Conley-Zehnder paradigm. By solving an inverse eigenvalue problem, we establish an equivalence between the spectral finite description derived from A-C-Z and a discrete mechanical model, a well definite finite spring-mass system. By doing so, we decrypt the abstract information encoded in the finite reduction and obtain a physically sound proxy for the continuous problem.
View original:
http://arxiv.org/abs/1107.4490
No comments:
Post a Comment