Laurent Freidel, Jeff Hnybida
We construct a new discrete basis of 4-valent SU(2) intertwiners. This basis possesses both the advantage of being discrete, while at the same time representing accurately the classical degrees of freedom; hence it is coherent. The closed spin network amplitude obtained from these intertwiners depends on twenty spins and can be evaluated by a generalization of the Racah formula for an arbitrary graph. The asymptotic limit of these amplitudes is found. We give, for the first time, the asymptotics of 15j symbols in the real basis. Remarkably it gives a generalization of the Regge action to twisted geometries.
View original:
http://arxiv.org/abs/1305.3326
No comments:
Post a Comment