Mark Greenfield, Matilde Marcolli, Kevin Teh
Spectral triples and quantum statistical mechanical systems are two important constructions in noncommutative geometry. In particular, both lead to interesting reconstruction theorems for a broad range of geometric objects, including number fields, spin manifolds, graphs. There are similarities between the two structures, and we show that the notion of type III sigma-spectral triple, introduced recently by Connes and Moscovici, provides a natural bridge between them. We investigate explicit examples, related to the Bost-Connes quantum statistical mechanical system and to Riemann surfaces and graphs.
View original:
http://arxiv.org/abs/1305.5492
No comments:
Post a Comment