1305.5699 (Marco Falconi)
Marco Falconi
We study the mean field limit of one-particle reduced density matrices, for a bosonic system in an initial state with a fixed number of particles, only a fraction of which occupies the same state, and for linear combinations of such states. In the mean field limit, the time-evolved reduced density matrix is proved to converge: in trace norm, towards a rank one projection (on the state solution of Hartree equation) for a single state; in Hilbert-Schmidt norm towards a mixed state, combination of projections on different solutions (corresponding to each initial datum), for states that are a linear superposition.
View original:
http://arxiv.org/abs/1305.5699
No comments:
Post a Comment