Mathieu Beau, Baptiste Savoie
We rigorously revisit a textbook model used to figure out the Bose-Einstein condensation (BEC) phenomenon created by dilute cold alkali atoms gases in a magnetic-optical trap. It consists of a d-dimensional (d = 1, 2, 3) ideal non-relativistic spin-0 Bose gas confined in a box and trapped in an isotropic harmonic potential. Throughout we review and clarify a series of methods involved in the derivation of the thermodynamics in the grand-canonical situation. To make the derivation consistent with the usual rules of the statistical mechanics, we assign through our open-trap limit approach the role of canonical parameter to a rescaled number of particles (instead of an effective density involving the pulsation of the trap). Within this approach, we formulate an Einstein-like and Penrose-Onsager-like criterion of BEC and show their equivalence. Afterwards, we focus on the spatial localization of the condensate/thermal gas. When dealing with the reduced density matrix, our method is similar to the loop path approach.
View original:
http://arxiv.org/abs/1306.3639
No comments:
Post a Comment