Emilio Elizalde, Klaus Kirsten, Nicolas Robles, Floyd Williams
A new, seemingly useful presentation of zeta functions on complex tori is derived by using contour integration. It is shown to agree with the one obtained by using the Chowla-Selberg series formula, for which an alternative proof is thereby given. In addition, a new proof of the functional determinant on the torus results, which does not use the Kronecker first limit formula nor the functional equation of the non-holomorphic Eisenstein series. As a bonus, several identities involving the Dedekind eta function are obtained as well.
View original:
http://arxiv.org/abs/1306.4019
No comments:
Post a Comment