Mihalis Dafermos, Gustav Holzegel, Igor Rodnianski
We construct a large class of dynamical vacuum black hole spacetimes whose exterior geometry asymptotically settles down to a fixed Schwarzschild or Kerr metric. The construction proceeds by solving a backwards scattering problem for the Einstein vacuum equations with characteristic data prescribed on the event horizon and (in the limit) at null infinity. The class admits the full "functional" degrees of freedom for the vacuum equations, and thus our solutions will in general possess no geometric or algebraic symmetries. It is essential, however, for the construction that the scattering data (and the resulting solution spacetime) converge to stationarity exponentially fast, in advanced and retarded time, their rate of decay intimately related to the surface gravity of the event horizon. This can be traced back to the celebrated redshift effect, which in the context of backwards evolution is seen as a blueshift.
View original:
http://arxiv.org/abs/1306.5364
No comments:
Post a Comment