Monday, July 22, 2013

1307.5303 (Maximilian Hanusch)

Invariant Connections in Loop Quantum Gravity    [PDF]

Maximilian Hanusch
Given a group $G$ and an abelian C*-algebra $A$ the antihomomorphisms $\Theta: G --> Aut(A)$ are in one-to-one with left actions $\Phi: G x Spec(A) --> Spec(A)$ for which the translations $\Phi_g$ are continuous. Under the assumption that $A$ is unital continuities of $\Theta$ and $\Phi$ turn out to be equivalent. Then a left action $\phi: G x X --> X$ can be uniquely extended to the spectrum of a C*-subalgebra $B$ of the bounded functions on $X$ if ${\phi*f | f in B}=B$ for each map $\phi_g$. In the present paper we apply this fact to the framework of loop quantum gravity. Here we show that quantization and reduction in general do not commute. More precisely, we prove that the symmetry-reduced quantum configuration space is (strictly) larger than the quantized space of the reduced classical theory. The former one has the advantage to be completely characterized by a simple algebraic relation that can encode measure theoretical information. We also show that there cannot exist any Haar measure on the cosmological quantum configuration space $\mathbb{R} \sqcup \mathbb{R}_Bohr$.
View original: http://arxiv.org/abs/1307.5303

No comments:

Post a Comment