Wednesday, March 7, 2012

1203.1199 (Yana A. Butko et al.)

Lagrangian and Hamiltonian Feynman formulae for some Feller semigroups
and their perturbations
   [PDF]

Yana A. Butko, René L. Schilling, Oleg G. Smolyanov
A Feynman formula is a representation of a solution of an initial (or initial-boundary) value problem for an evolution equation (or, equivalently, a representation of the semigroup resolving the problem) by a limit of $n$-fold iterated integrals of some elementary functions as $n\to\infty$. In this note we obtain some Feynman formulae for a class of semigroups associated with Feller processes. Finite dimensional integrals in the Feynman formulae give approximations for functional integrals in some Feynman--Kac formulae corresponding to the underlying processes. Hence, these Feynman formulae give an effective tool to calculate functional integrals with respect to probability measures generated by these Feller processes and, in particular, to obtain simulations of Feller processes.
View original: http://arxiv.org/abs/1203.1199

No comments:

Post a Comment