1206.3017 (Vesselin Petkov)
Vesselin Petkov
We study symmetric systems with dissipative boundary conditions. The solutions of the mixed problems for such systems are given by a contraction semigroup $V(t)f = e^{tG_b}f, t \geq 0$. The solutions $u(t, x) = V(t)f$, where $f$ is an eigenfunction of the generator $G_b$ with eigenvalue $\lambda,\Re \lambda < 0,$ are called asymptotically disappearing (ADS). We prove that the wave operators are not complete if there exist (ADS). This is the case for Maxwell system with special boundary conditions in the exterior of the sphere. We obtain a representation of the scattering kernel and we examine the inverse back scattering problem related to the leading term of the scattering kernel.
View original:
http://arxiv.org/abs/1206.3017
No comments:
Post a Comment