Miguel Angel Alejo, Claudio Muñoz
Breather solutions of the modified Korteweg-de Vries equation are shown to be globally stable in a natural H^2 topology. Our proof introduces a new Lyapunov functional, at the H^2 level, which allows to describe the dynamics of small perturbations, including oscillations induced by the periodicity of the solution, as well as a direct control of the corresponding instability modes. In particular, degenerate directions are controlled using low-regularity conservation laws.
View original:
http://arxiv.org/abs/1206.3157
No comments:
Post a Comment