Dražen Adamović, Ozren Perše
We give a coset realization of the vertex operator algebra $M(1)^+$ with central charge $\ell$. We realize $M(1)^+$ as a commutant of certain affine vertex algebras of level -1 in the vertex algebra $L_{C_{\ell} ^{(1)}}(-\tfrac{1}{2}\Lambda_0) \otimes L_{C_{\ell} ^{(1)}}(-\tfrac{1}{2}\Lambda_0)$. We show that the simple vertex algebra $L_{C_{\ell} ^{(1)}}(-\Lambda_0)$ can be (conformally) embedded into $L_{A_{2 \ell -1} ^{(1)}} (-\Lambda_0)$ and find the corresponding decomposition. We also study certain coset subalgebras inside $L_{C_{\ell} ^{(1)}}(-\Lambda_0)$.
View original:
http://arxiv.org/abs/1006.1752
No comments:
Post a Comment