Tuesday, July 10, 2012

1207.1793 (Dennis DeTurck et al.)

Generalized Gauss maps and integrals for three-component links: toward
higher helicities for magnetic fields and fluid flows, Part 2
   [PDF]

Dennis DeTurck, Herman Gluck, Rafal Komendarczyk, Paul Melvin, Haggai Nuchi, Clayton Shonkwiler, David Shea Vela-Vick
We describe a new approach to triple linking invariants and integrals, aiming for a simpler, wider and more natural applicability to the search for higher order helicities of fluid flows and magnetic fields. To each three-component link in Euclidean 3-space, we associate a geometrically natural generalized Gauss map from the 3-torus to the 2-sphere, and show that the pairwise linking numbers and Milnor triple linking number that classify the link up to link homotopy correspond to the Pontryagin invariants that classify its generalized Gauss map up to homotopy. This can be viewed as a natural extension of the familiar fact that the linking number of a two-component link in 3-space is the degree of its associated Gauss map from the 2-torus to the 2-sphere. When the pairwise linking numbers are all zero, we give an integral formula for the triple linking number analogous to the Gauss integral for the pairwise linking numbers, but patterned after J.H.C. Whitehead's integral formula for the Hopf invariant. The integrand in this formula is geometrically natural in the sense that it is invariant under orientation-preserving rigid motions of 3-space, while the integral itself can be viewed as the helicity of a related vector field on the 3-torus. In the first paper of this series [math.GT 1101.3374] we did this for three-component links in the 3-sphere. Komendarczyk has applied this approach in special cases to derive a higher order helicity for magnetic fields whose ordinary helicity is zero, and to obtain from this nonzero lower bounds for the field energy.
View original: http://arxiv.org/abs/1207.1793

No comments:

Post a Comment