Thalia D. Jeffres, Klaus Kirsten, Tianshi Lu
In this paper we applied the contour integral method for the zeta function associated with a differential operator to the Laplacian on a surface of revolution. Using the WKB expansion, we calculated the residues and values of the zeta function at several important points. The results agree with those obtained from the heat kernel expansion. We also obtained a closed form formula for the determinant of the Laplacian on such a surface.
View original:
http://arxiv.org/abs/1211.4043
No comments:
Post a Comment