Maurizio Ceseri, John M. Stockie
We develop a mathematical model for a three-phase free boundary problem in one dimension that involves the interactions between gas, water and ice. The dynamics are driven by melting of the ice layer, while the pressurized gas also dissolves within the meltwater. The model incorporates a Stefan condition at the water-ice interface along with Henry's law for dissolution of gas at the gas-water interface. We employ a quasi-steady approximation for the phase temperatures and then derive a series solution for the interface positions. A non-standard feature of the model is an integral free boundary condition that arises from mass conservation owing to changes in gas density at the gas-water interface, which makes the problem non-self-adjoint. We derive a two-scale asymptotic series solution for the dissolved gas concentration, which because of the non-self-adjointness gives rise to a Fourier series expansion in eigenfunctions that do not satisfy the usual orthogonality conditions. Numerical simulations of the original governing equations are used to validate the series approximations.
View original:
http://arxiv.org/abs/1301.0546
No comments:
Post a Comment