Douglas Lundholm, Jan Philip Solovej
In one and two spatial dimensions there is a logical possibility for identical quantum particles different from bosons and fermions, obeying intermediate or fractional (anyon) statistics. We consider applications of a recent Lieb-Thirring inequality for anyons in two dimensions, and derive new Lieb-Thirring inequalities for intermediate statistics in one dimension with implications for models of Lieb-Liniger and Calogero-Sutherland type. These inequalities follow from a local form of the exclusion principle valid for such generalized exchange statistics.
View original:
http://arxiv.org/abs/1301.3436
No comments:
Post a Comment