Wednesday, January 16, 2013

1301.3480 (Matilde Marcolli et al.)

Gauge networks in noncommutative geometry    [PDF]

Matilde Marcolli, Walter D. van Suijlekom
We introduce gauge networks as generalizations of spin networks and lattice gauge fields to almost-commutative manifolds. The configuration space of quiver representations (modulo equivalence) in the category of finite spectral triples is studied; gauge networks appear as an orthonormal basis in a corresponding Hilbert space. We give many examples of gauge networks, also beyond the well-known spin network examples. We find a Hamiltonian operator on this Hilbert space, inducing a time evolution on the C*-algebra of gauge network correspondences. Given a representation in the category of spectral triples of a quiver embedded in a spin manifold, we define a discretized Dirac operator on the quiver. We compute the spectral action of this Dirac operator on a four-dimensional lattice, and find that it reduces to the Wilson action for lattice gauge theories and a Higgs field lattice system. As such, in the continuum limit it reduces to the Yang-Mills-Higgs system. For the three-dimensional case, we relate the spectral action functional to the Kogut-Susskind Hamiltonian.
View original: http://arxiv.org/abs/1301.3480

No comments:

Post a Comment