David Li-Bland, Pavol Severa
We reformulate notions from the theory of quasi-Poisson g-manifolds in terms of graded Poisson geometry and graded Poisson-Lie groups and prove that quasi-Poisson g-manifolds integrate to quasi-Hamiltonian g-groupoids. We then interpret this result within the theory of Dirac morphisms and multiplicative Manin pairs, to connect our work with more traditional approaches, and also to put it into a wider context suggesting possible generalizations.
View original:
http://arxiv.org/abs/0911.2179
No comments:
Post a Comment