Alexander Alldridge, Joachim Hilgert, Tilmann Wurzbacher
We introduce a wide category of superspaces, called locally finitely generated, which properly includes supermanifolds but enjoys much stronger permanence properties, as are prompted by applications. Namely, it is closed under taking finite fibre products (i.e. is finitely complete) and thickenings by spectra of Weil superalgebras. Nevertheless, in this category, morphisms with values in a supermanifold are still given in terms of coordinates. This framework gives a natural notion of relative supermanifolds over a locally finitely generated base. Moreover, the existence of inner homs, whose source is the spectrum of a Weil superalgebra, is established; they are generalisations of the Weil functors defined for smooth manifolds.
View original:
http://arxiv.org/abs/1304.7527
No comments:
Post a Comment